Hollow polysiloxane nanostructures based on pressure - induced film expansion
نویسندگان
چکیده
Superhydrophobicity has gained extensive interest in academia and industry. One of the most facile ways of creating superhydrophobic surfaces is the surface-initiated synthesis of 1D polysiloxane nanostructures known as silicone nanofilaments. However, physicochemical details of their synthesis process remain a puzzle, and studies so far have fallen short in explaining the ways in which the 3D film growth transforms into 1D objects. From the observation of hollow cylindrical polysiloxane nanostructures, this study proposes a growth model based on pressure-induced uniaxial elongation of a partially cross-linked polysiloxane film. The pressure build-up is caused by gaseous by-products of hydrolysis and condensation reactions. The presented model aims to promote the understanding of the growth processes, and could thus facilitate the design of robust superhydrophobic coatings onto various surfaces. Furthermore, it is envisioned that novel applications utilizing the tubular nature of the nanostructures could emerge.
منابع مشابه
Low-temperature hollow cathode plasma-assisted atomic layer deposition of crystalline III-nitride thin films and nanostructures
Hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) is a promising technique for obtaining IIInitride thin films with low impurity concentrations at low temperatures. Here we report our previous and current efforts on the development of HCPA-ALD processes for III-nitrides together with the properties of resulting thin films and nanostructures. The content further includes nylon 6,...
متن کاملNovel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization.
Novel anodic aluminium oxide (AAO) films and hollow nanostructures were synthesized via a simple electrochemical and chemical etching route; fluctuating nanotube growth inside AAO film fabricated under ultra-high voltage was considered to be the main reason for the formation of such new structures.
متن کاملCatalysing the production of multiple arm carbon octopi nanostructures
Octopus-like carbon nanofibers with leg diameters as small as 9 nm are reported, with a high yield over large areas, using a unique photo-thermal chemical vapour deposition system. The branched nature of these nanostructures leads to geometries ideal for increasing the surface area of contacts for many electronic and electrochemical devices. The manufacture of these structures involves a combin...
متن کاملMechanical and Thermal Stresses In a Linear Plastic FGM Hollow Cylinder Due to Axisymmetric Loads
In this paper, an analytical solution for computing the linear plastic stresses and critical temperature and pressure in a FGM hollow cylinder under the internal pressure and temperature is developed. It has been assumed that the modulus of elasticity and thermal coefficient of expansion were varying through thickness of the FGM material according to a power law relationship. The Poisson's rati...
متن کاملEffect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies
Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of t...
متن کامل